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I. INTRODUCTION AND OBJECTIVES

The objectives of this study are to develop interpenetrating polymer

network (IPN) elastomers and foams which exhibit good sound attenuation

characteristics over a broad frequency andtemperature range. In this study

the effect of various fillers with platelet geometry, such as graphite and

mica, were investigated. The platelet geometry of the fillers is believed

to encourage energy dissipation via shear contact of the planar particles.

The fillers were incorporated into IPN elastomers by random batch-mixing

and rubber milling. The effect of post-curing on the dynamic mechanical

properties (tanS) of IPN elastomers was also studied. IPN foams with different

polyurethane/epoxy ratios were prepared and the sound absorption was measured

40 by the impedance tube method.

II. EXPERIMENTAL

A. Materials

The materials used in this study are summarized in Table I. The

polyols, chain extender, and epoxy resin were degassed under vacuum at 700C

for 24 hours. The other chemicals were used as received from the manufacturers.

B. Preparation of Samples

1. IPN Elastomers

The IPN elastomers based on polyurethane and epoxy were pre-

pared by the simultaneous polymerization technique. One component contained

the isocyanate (Isonate 143L) and epoxy resin (DER 330). The other component

0 contained polyols (Niax 31-28), chain 6xtender (Isonol 100), urethane catalyst

03O2

* a



2

* (T-12), epoxy catalyst (BF3-etherate) and various fillers.

The two components were mixed together for one minute a' room temperature

using a high speed mechanical stirrer. The mixture was then poured into a

pre-heated mold and pressed on a laboratory platen press at 100°C. The samples

were then removed from the press (after curing for 30 min.) and then post cured

in an oven at 1000 C for 16 hoUrs. Samples were conditioned at 250 C and 50%

relative humidity for at least three days prior to testing.

2. IPN Foams

IPN foams were prepared by the one shot, free rise method. Since

difficulties were encountered in previous studies due to the slow reaction of

the epoxy component at ambient temperature, the mixing temperature in this study

was raised to 80 C. The Niax polyol 31-28 and epoxy resin DER 330

* were first preheated to 800C. The surfactants (DC-193, L-540), blowing agents

(water, Freon 11A), chain extender (Isonol 100), polyurethane catalyst (T-12,

A-I), and catalysts for epoxy resin (XU-213, DMP-30) were added and thoroughly

mixed with a high speed stirrer for two minutes. The cream time, rise time

and tack-free time were recorded. The foams were cured at 900 C for 16 hours

and conditioned at 250C and 50% relative humidity for at least three days prior

to testing.

C. Testing

1. Dynamic Mechanical Spectroscopy

All dynamic mechanical measurements were conducted on a Rheo-

vibron dynamic viscoelastometer, DDV II (Toyo Manufacturing Co.) at a scanning

rate of 1 to 2°C per minute in the glass transition region or every 3 to 50C

per minute in the non-transition region. The specimens were in the form of

rectangular films with dimensions of 2 cm in length, 0.1 cm in width, and
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0.05 cm in thickness. The specimens were inserted into the chamber and cooled

to -50°C where the measurement began. All tests were carried out at a fre-

* quency of 110 Hz.

2. Standing Wave Apparatus (Bruel & Kjaer, Type 4002)
o For Sound Absorption Measurement

This apparatus (Type 4002) is designed for easy and quick

determination of the absorption coefficient of acoustic materials by the

* lstanding wave method. The advantages of the method are that only small

circular samples, about 10 cm in diameter, are needed. The principal of

the measurement method is shown in Figure A. The loudspeaker at one end of

the tube is operated at the desired test frequency from an audio-frequency

oscillator with 6 ohms output impedance and a distortion of less than 1%

(B.F. Oscillator Type 1022). The sound waves move through the tube and

* Qstrike the sample which is placed in a sample holder with a thick back plate,

*to avoid all sound absorption by the apparatus itself. The sound waves are

then partly reflected at the sample. The resultant of the incident wave with

0 O amplitude 1 and reflected wave with amplitude r is a standing wave pattern

*with alternate sound maxima l+r and minima l-r in the tube. From the ratio

n of these sound pressure maxima and minima the reflection coefficient r (see

4C, equation below) follows directly.

n-l
r nTT (1)

However, we are interested in the absorption coefficient ct, i.e. the ratio of

the energy absorbed by the sample to the incident energy. In other words,

.t 1- r , from which, with the aid of the relation (1):

(2)
1

n +-- +2
n
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The sound field is explored by means of a probe microphone, movable on a track

equipped with a scale on which the exact distance between the probe entrance

and test sample can be read. The microphone voltage is amplified by a selective

amplifier to reduce the influence of hum and noise and higher harmonics, which

are inevitably generated by the speaker in the tube. Particularly suitable

-for this purpose is the 1/3 Octave Analyzer 2112 with 33 fixed filters from

*22 Hz to 45 kHz and three scales, 0-100%, 0-70%, and 0-30%.

The absorption coefficient is determined by the tube measurement method

only at normal incidence, which is why the measured coefficients are generally

- somewhat smaller than those determined by the reverberation room method

* according to W.C. Sabine's formula. In Figure B a curve is shown which indi-

- cates the relationship between the results of the tube method and the reverber-

-' ation room method.

3. Density

The density of foam samples was measured according to ASTM D-1622.

III. RESULTS AND DISCUSSION

A. Effect of Fillers on IPN Elastomers

The effect of various fillers on the morphology (tan6) of IPN

- elastomers was investigated. The polyurethane/epoxy IPN (formulation #43,

" previous Report No. 1), 60/40 with 2% Isonol 100 as chain extender, was

selected as a model formulation (labelled as formulation #1 in this report).

-This formulation was repeated to check the reproducibility and consistency of
the preparation. The results are shown in Figures 1 and 2. Comparison of both

*figures indicates the reproducibility of previous work.
I .

* -
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Since it is postulated that fillers with platelet geometry shall encourage

• energy dissipation via shear contacts of the planar particles, fillers with

platelet structure such as graphite flake and mica flake were incorporated in

various proportions in the PU/epoxy IPN.

* Three different particle sizes of graphite flake (#1 -20 mesh to +80 mesh,

#2 -50 mesh to +200 mesh, and #3 -80 mesh down) were investigated. Initially,

the graphite filler (platelets) was incorporated into the PU/epoxy IPN by

* random batch mixing with a high speed stirrer and then pressing on a platen

press. The dynamic mechanical spectra of three graphite filled IPNs (10%)

are shown in Figures 3-5 and the comparison of tan6 of unfilled and graphite

* filled elastomers is shown in Figure 6. The result in Figure 6 shows a little

increase in tan, and a shift of Tg to about 100 C lower. When the amount of

graphite filler was increased to 20% and 40% as shown in Figures 7 and 8, it

* was found that the tan- magnitude decreased (Figure 9). An increase as well

as a broadenir., wus expected with this filler (studies at the University of

Dayton showed these results, i.e. increase and broadening of tan6 with addition

* of graphite platelets).

The graphite filler was also incorporated into the IPN elastomer on a

rubber mill. This technique was used so that the shear force between the rolls

B will align the platelets of the graphite filler in the same direction. This

should facilitate energy dissipation. Twenty and forty percent of #2 graphite

filler were incorporated into the IPN by this technique and their dynamic

*I mechanical spectroscopy were measured and are shown in Figures 10 and 11. At

20% graphite filler there was no change of tanS observed, however, at the 40%

level the tan6 breadth decreased.

Ak In the case of mica filler, the filler was incorporated into the IPN

system with and without Isonol-l00 chain extender. The same phenomenon was

..... . . . . ..
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was observed. As the amount of filler increased, the tan6 magnitude decreased

* (Figures 12 and 13). In the system with Isonol-l00 chain extender, Figure 14,

the tan6 did not show significant change.

Figures 15 and 16 show the dynamic mechanical spectra of the Dicaperl

FP-1010 (hollow glass bubble filler) and Sundex 740T plasticizer filled IPN

elastomers. At the 10% level, in both cases, there was no change of tan6

observed. The amount of Dicaperl filler and plasticizer will be increased

in the next study.

B. The Effect of Post-Curing Time

The effect of post-curing was investigated by measuring the dynamic

mechanical properties of the IPN elastomers after the samples were post-cured

for different periods of time (e.g. 0, 2, 8, and 16 hours). The results are

shown in Figures 17-20 and the tan5's are compared in Figure 21. It was found

*that with no post-curing, the sample showed a high tanS. However, as the post-

curing time increased to 2, 8 and 16 hours, the tan6 magnitude decreased with

the Tg shifted to higher temperatures as expected (,100C). The high tan6 of

the sample without post-curing or low post-curing time was probably due to

the uncured epoxy as well as the polyurethane. The molecular chains are

partially loosening and the small chain segments can move. An attempt was

made to stabilize the uncured condition by immersing the uncured sample in

methanol (to "kill" the reactive epoxy groups)for 3 hours and drying the

sample under vacuum for 24 hours. The dynamic mechanical spectroscopy was

taken and is shown in Figure 22. The tan6 was found to decrease to the same

level as the sample post-cured for 8 hours. This area will be further investi-

gated.

0 7
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C. Foams

0 The IPN foams were prepared by mixing the preheated polyol and epoxy

0resin at 80 C. The high temperature was required in order to speed up the epoxy

reaction. However, at this temperature, the evaporation rate of the blowing

agent, Freon 11A, was too rapid and thus a second blowing agent, water, was

necessary in order to obtain low density foams. Using water in the formulations

required adjusting the amount of the catalysts, since problems with collapsing

and shrinkage arose. It was observed that this foam system was sensitive to

the amount of catalyst used. Efforts were made to formulate some samples by

changing the percent water used and adjusting the amount of the catalysts for

different polyurethane/epoxy (PU/epoxy) ratios.

IPN foams were prepared with PU/epoxy ratios of 70/30, 60/40, 50/50, 40/60,

and 30/70. An isocyanate index of 105 was used in preparing these samples. Fig-

ures 23-28 show the percentage of sound absorption of foam containing 2%

Isonol 100 as chain extender. In these formulations the urethane component con-

tained excess Isonate 143L to react with the pendant hydroxyl group of the epoxy

41 DER 330. Figures 29-31 represent the sound absorption of the foams without

Isonol 100 and excluding the excess Isonate 143L to react with the epoxy. Fig-

ures 23 and 24 show the tested specimens cut out from the top and bottom of the

4- prepared samples with a PU/epoxy ratio of 70/30. This was done to investigate

how homogeneous the samples were in the direction of foam rise. It was suspected

that concentration of the epoxy may tend to be more at the bottom of the prepared

samples, since the unreacted epoxy may descend due to gravity. This phenomenon

is more likely to happen while the foam is rising and gelling. Therefore, it is

important to have balanced rates of reactions of both the Polyurethane and the

* epoxy systems. The lower portion of the sample, Figure 24, shows about 10-15%

lower sound absorption than the upper portion, Figure 23, at higher frequencies.
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| This, as mentioned above, could be due to more available hard segments (epoxy

crosslinks) in the lower portion of the sample. In Figure 32, the polyurethane

*; reaction was slowed down by applying less amounts of catalysts, A-l and T-12.

The curing effect on the percent sound absorption of a sample with a PU/

4) epoxy ratio of 40/60 is shown in Figures 33 and 3. As can be seen from these

figures, the cured specimen has a lower sound absorption capability over the

test frequencies. This is most likely due to uncured epoxy cor lining

4M a distribution of MW and therefore broader energy absorbing abilities (wider

Temp. and frequency range). Figiures 35 and 36 represent foams without the blowing

agent, Freon lIA, at different levels of catalyst, DMP-30. The excess amount

"4 of DMP-30 promoted trimerization of Isonate 143L and gave a harder structure

to the foam which resulted in lower percent sound absorption. Foams were pre-

pared with a different type of blowing agent (dichloromethane) which has a

0 higher boiling point than Freon lIA. Samples made with blowing agent from pre-

heated (also not preheated) epoxy and Niax polyol show lower percent sound

absorption. The test results for both preheated and not preheated samples are

0 shown in Figures 37 and 38. The sample tested in Figure 28,due to closed and
tight cell structure, showed poor sound absorbing properties. This demonstrates
the important effect of cell structure of a foam on dissipation of energy and

sound.

C

IV. FUTURE WORK

A. Different fillers and amounts of fillers and plasticizer will be

further investigated.

B. Various types of fillers will be incorporated into the IPN foam

and the sound attenuation properties will be studied.

C. Three-component IPNs will be studied.
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Table I Materials

Materials Chemical Composition Eq.Wt. Supplier

Isonate 143L Carbodiimide modified
diphenylmethane diisocyanate 143 Dow Chem. Co.

Niax 31-28 Graft copolymer of poly(oxy-
propylene)(oxyethylene) adduct
of glycerol 2004.5 Union Carbide

* Mondur MR Polymeric isocyanate 133.3 Mobay

Isonol 100 N,N'-Bis(2-hydroxypropyl)aniline 104.5 Dow Chem. Co.

DER 330 Bisphenol A-Epichlorohydrin epoxy
resin 177-178 Dow Chem. Co.

T-12 Dibutyltin dilaurate - M & T Chem.

Niax A-1 70% Bis(2-dimethylaminoethyl)
ether solution in dipropylene
glycol Union Carbide

BF3(02CH5)2  Boron trifulorine etherate Eastman Chem.

* DMP-30 2,4,6-Tris (dimethylaminomethyl)
phenol Rohm & Haas

XU-213 BCl 3-Amine complex Ciba-Geigy

Freon 11A Trichlorofluoromethane E.I. duPont

o DC 193 Silicone copolymer surfactant Dow Corning

L-540 Silicone surfactant - Union Czrbide

Suzorite mica Mica flake - Marietta Resources
Inter. Ltd.

Dicaperl FP1OIO Hollow glass bubble filler - Grefco Inc.

Sundex 740T Plasticizer Sun Products

Graphite flake Size: -20 Mesh + 80 Mesh Asbury Graphite
#1 Mills, Inc.

Graphite flake Size: -50 Mesh + 200 Mesh Asbury Graphite
#2 Mills, Inc.

Graphite flake Size: -80 Mesh down Asbury Graphite
#3 Mills, Inc.

4
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Figure 1. Dynamic mechanical spectroscopy of PU/Epoxy (60/40) IPN
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Figure 4. Dynamic mechanical spectroxcopy of PU/Epoxy (60/40) IPN
with 10% #2 graphite filler
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Figure 5. Dynamic mechanical spectroscopy of PU/Epoxy (60/40) IPN with
10% # 3 graphite filler
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0 Figure 6. Comparison of the tan6 of unfilled and graphite filled

PU/Epoxy (60/40) IPN
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Figure 7. Dnmcmechanical spcrsoyof PU/poy 60/0)V P

with 20% #2 graphit
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Figure 8. Dynamic mechanical spectroscopy of PU/Epoxy (60/40)
IPN with 40%/0 #2 graphite
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Figure 9. Comparison of the tan6 of graphite filled PU/Epoxy
(60/40) IPN
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Figure 10. Dynamic mechanical spectroscopy of PU/Epoxy 60/40
with 20% #2 graphite, roll milled technique
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Figure 11 . Dynamic mechanical Spectroscopy of PU/Epoxy (60/40)
IPN with 40% #2 graphite, roll milled technique
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o _Figure 12. Dynamic mechanical spectroscopy of PU/Epoxy (60/40)
IPN with 20% Suzorite mica filler, no Isonol-100
chain extender
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Figure 13. Dynamic mechanical spectroscopy of PU/Epoxy (60/40) IPN
-with 40% suzorite mica, no Isonol-100 chain extender
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Figure 14. Dynamic mechanical spectroscopy of PU/Epoxy (60/40) IPN
I with 20% Suzorite mica filler
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Figure 15. Dynamic mechanical spectroscopy of PU/Epoxy (60/40)
IPN with 10% Dicaperl filler
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Figure 16. Dynamic mechanical spectroscopy of PU/Epoxy (60/40)
* IPN with 10% Sundex 750T plasticizer
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Figure 17. Dynamic mechanical spectroscopy of PU/Epoxy (60/40)
IPN without post-curing
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Figure 18. Dynamic mechanical spectroscopy of CU/Epoxy (60/40)

* IPN after 2 hrs. post curing at 100 C
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Figure 19. Dynamic mechanical spectroscopy of gU/Epoxy (60/40)
* IPN after 8 hrs. post-curing at 100 C
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Figure 20. Dynamic mechanical spectroscopy 8f PU/Epoxy (60/40) IPN
after 16 hrs. post-curing at 100 C
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0 Figure 21. Comparison of the tan6 of samples with different
post-curing times
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Figure 22. Dynamic mechanical spectroscopy of non-post-cured PU/Epoxy
(60/40) IPN stabilized with CH 3OH
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I*Figure 23. Top portion of 70/30 PU/Epoxy IPN foam 35
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Figure 25. Sound absorption properties of 60/40 PU/Epoxy IPN foam
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Figure 26. Sound absorption property of 50/50 PU/Epoxy IPN foam
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Figure 27. Sound absorption property of 40/60 PU/Epoxy IPN foam 3
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Figure 28. Sound absorption property o f 30/70 PU/Epoxy 1PM foam
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Figure 29. Sound absorption property of 70/30 PU/Epoxy IPN foam excluded 38
Isonol 100 chain extended and excess Isonate 143L
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Figure 30. Sound absorption property of 60/40 PU/Epoxy IPN foam excluded

* Isonol 100 chain extender and excess Isonate 143L
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* Figure 31. Sound absorption property of 50/50 PU/Epoxy IPN foam excluded

100 Isonol 100 chain extende-r and oxc-ss Isonate 143L
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Figure 32. Sound absorption property of 60/40 PU/Epoxy TPN foam with

1o!-! amonUnt of A-i catalyst (0.01) and T-12 catalyst (0.01%)
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*Figure 33. So8nd absorption property of 40/60 PU/Epoxy IPN foam cured at 4

90 C for 16 hours
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Figure 34. Sound absorption property of 40/60 PU/Epoxy TPN foam without4
post-curing
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ro Figure 35. Sound absorption property of 50/50 PU/Epoxy IPN foam (no 4
Freon 11A, DMP-30=0.4%)
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42* Figure 37. Sound absorption property of 50/50 PU/Epoxy JPN foam using
CH2C12 as blowing agent and room temperature mixing
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Figure 38. Sound absorption property of 50/50 PU/Epoxy IPN f8am using

* CH2Cl2 as blowing agent, mixing temperature at 80 C
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Figure 39. Sound absorption of GM polyurethane foam (Control)
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o Figure 40. Sound absorption.property of University of Detroit's
pulyurethane foam (Control)
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